Absorption Coefficients from the Professional Literature

(c) 2014 by Barton Paul Levenson



Introduction

The Beer-Lambert-Bouguer law of radiative transfer is:

I = I0 exp(k ρ ds)

where I is the irradiance that gets through a medium,
I0 the irradiance entering the medium,
k the extinction coefficient,
ρ the density of the medium, and
ds the distance the beam travels through the medium.

For a one-dimensional setup (as in a radiative-convective model), you can use F and F0 for flux density instead of irradiance.

The units for these figures can be very different. In the SI, irradiance is measured in watts of power, per square meter of area, per meter of wavelength, per steradian of solid angle (W m-2 m-1 sr-1). I0, of course, would be in the same units. k would be in units of square meters per kilogram of absorber, an "extinction cross-section." ρ would be in kilograms per cubic meter, ds in meters. For the 1-D case, F and F0 would be in watts per square meter (W m-2).

The product of k, ρ and ds is the optical thickness, τ:

τ = k ρ ds

The units cancel and thus optical thickness is dimensionless. For the 1-D case, as in an RCM, you'd want to multiply the optical thickness by a "diffusion factor," usually taken as 5/3, to correct for the transition from three dimensions to one.

Extinction can be through either of two processes: absorption and scattering, which each have their own k figures:

ke = ka + ks

For the IR, in a thin atmosphere like that of Earth or Mars (but not Venus), scattering is negligible. Thus the coefficients in this catalog are absorption coefficients.

The problem is that not everybody uses the same units. Spectroscopists notoriously prefer "wavenumber" to describe light instead of wavelength or frequency, and like it in cgs units of cm-1. Absorption coefficients in the professional literature are given in cgs units and in SI units, as molecular cross-sections (σ) in cm2, in units of reciprocal pressure times reciprocal length, as "volume" coefficients (β) of reciprocal length alone, etc., etc., etc. In this catalog I just give the original units; translation to the units you prefer is the responsibility of the reader.



Warning: Beer's Law does not apply in all cases. It requires

With all these restrictions, you might wonder if it ever applies in the real world. In atmospheric transfer modeling, there are ways around the difficulties; e.g., one uses thin layers of atmosphere to approximate homogeneous media. There are, of course, many radiative transfer schemes that use more sophisticated mathematical models than Beer's Law, but it still has its uses. Without further ado, here's the catalog.




Contents as of 5 December 2014

Bartko and Hanel 1968CO2, H2O, O3
Chou and Lee 1996O3
Essenhigh 2001H2O, CO2, CH4
Evans 2001CO2
Gonima 1972H2O, CO2, O3
Griffith et al. 2003CH4
Hanel et al. 1963H2O, O3, CO2
Hanst et al. 1975CCl2F2, CCl3F, CCl4, C2Cl4, CHClF2, CH3CCl3, C2H2, C2H4, CNH2N+2, COS, N2O
Kondratiev and Niilisk 1960H2O
Larsen et al. 2007Liquid-water clouds
Lubin 1994Liquid-water clouds over Antarctic waters
Lundt and Kinnunen 1976H2O
McDade 2007O3
Okabe 1978N2
Phillips 1998liquid water clouds, ice clouds
Rinsland et al. 1981N2
Roberts et al. 1976H2O continuum
Tarasova and Fomin 2000H2O
Varanasi and Nemtchinov 1994CCl2F2 (CFC-12)
Verstraete 1986smoke, dust
Weissler et al. 1952N2
Werbe-fuentes et al. 2008CO2
Yamamoto 1953H2O


As of the above date, this catalog references 23 sources for 20 absorbers: 15 gases, 2 aerosol particles, 3 cloud particles. These break down as follows:

GasName(s)
CCl2F2CFC-12, dichlorofluoromethane
CCl3FCFC-11, trichlorofluoromethane
CCl4carbon tetrachloride
C2Cl4perchloroethylene
C2H2acetylene
C2H4ethylene
CHClF2CFC-22, chlorodifluromethane
CH3CCl3methyl chloroform, 1,1,1-trichloroethane
CH4methane
CO2carbon dioxide
COScarbonyl sulfide
H2Owater vapor
N2nitrogen
N2Onitrous oxide
O3ozone

AerosolName(s)
Cn, etc.smoke
SiO2dust

Cloud particleName(s)
H2Oice clouds
H2Oliquid water clouds
H2Omaritime Antarctic liquid water clouds




Bartko and Hanel 1968

These figures are for very high altitudes on Venus, at perhaps p = 100 Pa, T = 230 K.

CO2ν (cm-1)β (cm-1)
   0 -  2000.0000015
 200 -  2500.00000055
 250 -  3350.00067
 550 -  6250.000016
 625 -  6600.0000075
 660 -  7200.00000032
 720 -  8100.000051
 810 -  8800.00096
 880 -  9200.65
 920 - 10000.58
1000 - 11000.002
1100 - 16000.000048

H2Oν (cm-1)ka (cm2 g-1)
   0 -  200  1.8
 200 -  250  0.31
 335 -  495 14
 495 -  550 35
1000 - 1100  1
1100 - 1600  3
1600 - 2000 14
2000 - 2600200
2600 - 8000800
1700 - 8000510

O3ν (cm-1)β (cm-1)
550 - 6257.6

Bartko F, Hanel RA 1968. Non-gray equilibrium temperature distributions above the clouds of Venus. ApJ 151, 365-378.




Chou and Lee 1996

These figures are presumably for stratosphere conditions, for the UV and visible range.

O3λ (μ)ka (cm-1 atm-1)
 0.175 - 0.225 30.47
 0.225 - 0.245187.24
 0.245 - 0.280301.92
 0.280 - 0.295 42.83
 0.295 - 0.310  7.09
 0.310 - 0.320  1.25
 0.320 - 0.400  0.0345
 0.400 - 0.700  0.0539

Chou M-D, Lee K-T 1996. Parameterizations for the Absorption of Solar Radiation by Water Vapor and Ozone. J. Atm. Sci. 53, 1203-1208.




Essenhigh 2001

These band figures are for sea-level pressure, at 15 °C. Essenhigh is a chemical engineer who argues against the reality of global warming, but there's nothing wrong with his math. "Which seats him in the crazy but not stupid section."

H2Oλ (μ)ka (m-1 atm-1)
 1.8 -  2.0574
 2.5 -  3.0 57.4
 5.0 -  8.0  8.5
12.0 - 25.0  0.69

CO2λ (μ)ka (m-1 atm-1)
 1.9 -  2.1656
 2.6 -  2.9139.4
 4.1 -  4.5 18.37
13.0 - 17.0  1.48

CH4λ (μ)ka (m-1 atm-1)
 2.2 -  2.5105
 3.5 -  4.5 12.9
 6.5 -  7.0  2.3

Essenhigh 2001. In Box: Robert Essenhigh Replies. Chemical Innovation 31, 62-64 (Nov. 2001).




Evans 2001

observes that the mass absorption coefficient for CO2 at 1000 mb pressure and 296 K temperature at a wavenumber of 700.39 cm-1 is 16.3 m2 kg-1. The wavenumber corresponds to a wavelength of 14.278 μ.

Evans F 2001. Week 2: September 3-7. Beer’s Law and Thermal Radiative Transfer. http://nit.colorado.edu/atoc5560/week2.pdf, accessed 3/5/2007.




Gonima 1972

H2Oλ (μ)ka (m2 kg-1)
H2O 5.000 -  5.500 4.000
 5.500 -  7.00017.350
 7.000 -  7.160 0.815
 7.155 -  7.285 0.525
 7.285 -  7.435 0.310
 7.435 -  7.905 0.470
 7.900 -  8.000 0.086
 8.000 -  8.160 0.014
 8.155 -  8.285 0.011
 8.285 -  8.635 0.014
 8.630 - 10.630 0.006
10.630 - 11.630 0.005
11.625 - 12.275 0.016
12.280 - 12.460 0.029
12.465 - 13.035 0.061
13.030 - 13.230 0.083
16.670 - 17.750 0.338
17.755 - 17.845 0.160
17.845 - 18.015 0.100
18.015 - 18.105 0.148
18.110 - 18.470 0.320
18.470 - 18.650 0.152
18.650 - 18.930 0.100
18.930 - 19.110 0.170
19.110 - 20.070 0.360
20.070 - 20.270 0.240
20.270 - 20.470 0.156
20.470 - 20.770 0.250
20.770 - 21.070 0.165
21.075 - 21.805 0.635
21.800 - 22.200 1.270
22.200 - 22.400 0.300
22.400 - 23.000 0.660
23.000 - 23.600 0.320
23.600 - 24.060 2.620
24.055 - 24.165 0.770
24.170 - 24.290 0.200
24.290 - 24.410 0.100
24.410 - 24.530 0.050
24.530 - 24.650 0.110
24.650 - 24.770 0.216
24.770 - 24.890 0.290
24.890 - 26.010 2.620
26.020 - 26.540 0.500
26.530 - 27.050 0.780
27.045 - 27.315 2.620
27.320 - 27.720 0.300
27.720 - 28.000 2.620
28.000 - 30.00011.800
30.000 - 34.00016.050
34.000 - 35.000 9.000
35.000 - 38.00020.000
38.000 - 38.100 0.900
38.105 - 38.295 0.480
38.290 - 38.670 0.310
38.670 - 39.050 0.560
39.050 - 39.250 1.100
39.255 - 41.20520.000
41.210 - 41.410 1.100
41.410 - 41.610 0.620
41.615 - 41.825 0.320
41.795 - 42.205 0.100
42.235 - 42.445 0.160
42.435 - 42.645 0.520
42.655 - 43.005 0.900
43.280 - 100.00020.000

CO2λ (μ)ka (m2 kg-1)
13.235 - 13.545 0.17
13.545 - 13.995 0.82
14.000 - 16.00020.00
16.000 - 16.660 0.88

O3λ (μ)ka (m2 kg-1)
 9.075 -  9.265 34.0
 9.260 -  9.320130.0
 9.320 -  9.400272.0
 9.400 -  9.480406.0
 9.475 -  9.605395.0
 9.615 -  9.745333.0
 9.740 -  9.860216.0
 9.855 -  9.945112.0
 9.955 - 10.045 40.0
10.045 - 10.135  7.5

Gonima L 1972. Validation of a radiation model for estimation of longwave net radiation at the surface. Clim. Res. 2, 55-63.




Griffith et al. 2003

cites methane absorption coefficients, presumably under Titan conditions (pressure 0-1.5 times Earth's sea level, temperatures of 70-140 K) at particular wavelengths.

CH4λ (μ)ka (km-1 amagat-1)
 0.830.011
 0.940.01
 1.070.005
 1.280.005
 1.580.005
 2.00.005
 2.90.07

Griffith CA, Owen T, Geballe TR, Rayner J, Rannou P 2003. Evidence for the Exposure of Water Ice on Titan’s Surface. Science 300, 628-630.




Hanel et al. 1963

H2Oλ (μ)ka (cm2 g-1)
 6.33 -   6.50100
 6.50 -   6.67250
 6.67 -   6.85100
10.75 -  11.75*  0.000050
21.00 -  25.00 10
25.00 -  30.00 40
30.00 -  40.00160
40.00 - 125.00400
*continuum

O3λ (μ)ka (cm2 g-1)
8.90 -  9.350.063
9.35 -  9.91.6
9.90 - 10.10.063

CO2λ (μ)ka (cm2 g-1)
14.0 - 14.50.4
14.5 - 15.52
15.5 - 16.00.4

Hanel RA, Bandeen WR, Conrath BJ 1963. The Infrared Horizon of the Planet Earth. J. Atmos. Sci. 20, 73-86.




Hanst et al. 1975

These figures for assorted air pollutants are given for single wavenumbers, presumably at sea-level conditions.

Absorberν (cm-1)βa (cm-1 atm-1)
CCl2F2 (CFC-12) 930 44
CCl3F (CFC-11) 847110
CCl4 (carbon tetrachloride) 793120
C2Cl4 (perchloroethylene) 915 30
CHClF2 (CFC-22)1118 80
CH3CCl3 (methyl chloroform)1090 15
C2H2 (acetylene) 720230
C2H4 (ethylene) 950 30
CNH2N+2 (paraffinic carbon)2970  4
COS (carbonyl sulfide)2055 70
N2O (nitrous oxide)2575  0.6
N2O (nitrous oxide)1151  0.15

Hanst PL, Spiller LL, Watts DM, Spence JW, Miller MF 1975. Infrared Measurement of Fluorocarbons, Carbon Tetrachloride, Carbonyl Sulfide, And Other Atmospheric Trace Gases. J. Air Pollution Control Assn. 25, 1220-1226.




Kondratiev and Niilisk 1960

These figures are for water vapor for 1 atm pressure and 300 K. The pressure exponent used is 0.8.

H2Oλ (μ)ka (precipitable cm-1)
12 - 13 0.25
13 - 14 0.84
14 - 15 1.30
15 - 16 1.65
16 - 17 4.40
17 - 1817.2

Kondratiev KY, Niilisk HI 1960. On the question of carbon dioxide heat radiation in the atmosphere. Pure and Appl. Geophys. 46, 216-230.




Larsen et al. 2007

found an SI absorption coefficient of 119 m2 kg-1 for water clouds in the thermal infrared. They also found an assymetry factor g = 0.83 and single-scattering albedo ω = 0.694.

Larsen VE, Kotenberg KE, Wood NB 2007. Derivation and Tests of the GCSS Analytic Longwave Radiation Formula. Mon. Weather Rev. 135, 689-699.




Lubin 1994

found an absorption coefficient in the "mid-infrared" of 65 m2 kg-1 for Antarctic maritime clouds, lower than figures previously used in many climate models.

Lubin D 1994. Infrared Radiative Properties Of the Maritime Antarctic Atmosphere. J. Clim. 7, 121–140.




Lundt and Kinnunen 1976

found an absorption coefficient of 0.145 ± 0.008 m2 g-1 for water vapor at a wavelength of 27.97 μ. They noted that there is negligible absorption from other agents at this wavelength.

Lundt PB, Kinnunen, L 1976. An application of a water vapour laser. J. Physics E: Scientific Instruments 9, 528-529.




McDade 2007

gives the absorption coefficient for ozone (O3) as 10 m2 kg-1 at a wavenumber of 1110 cm-1. This corresponds to a wavelength of 9.009 μ.

McDade I 2007. EATS 4230 & ESS 5230, Remote Sensing of the Atmosphere, Assignment #2, Distributed Sunday 18th February 2007 - due Friday 2nd March 2007. http://www.yorku.ca/mcdade/eats4230/ Assignment%202%202007.pdf, accessed 3/05/2007.




Okabe 1978

gives the absorption cross-section of molecular nitrogen (N2) as σ = 2 x 10-21 cm2 at wavelengths in the far-ultraviolet of 0.116-0.145 μ.

Okabe H 1978. Photochemistry of Small Molecules. NY: Wiley-Interscience.




Phillips 1998

discusses the parameters used in the UK Meteorological Office climate model HadAm1 as of 1993. It listed absorption coefficients, in the thermal infrared, of 130 m2 kg-1 for liquid water clouds and 65 m2 kg-1 for ice clouds. It also noted that effective radii of 7 and 30 μ were used for water and ice clouds, respectively.

Phillips T 1998. United Kingdom Meteorological Office: Model UKMO HadAM1 (2.5x3.75 L19) 1993. http://www-pcmdi.llnl.gov/projects/modeldoc/amip/36ukmo.html, accessed 12/05/2014.




Rinsland et al. 1981

gives absorption coefficients for molecular nitrogen (N2) at various wavenumbers under stratosphere conditions, presumably about 20,000 Pa pressure, and T = 230 K. The zenith angle as given as 94°, with a "tangent altitude" of 21.8 km. Nitrogen was assumed to have a volume mixing ratio of 0.781.

N2ν (cm-1)ka (m2 kg-1)
23950.0000692
24000.0000692
24050.0000673
24100.0000666
24150.0000654
24200.0000641
24250.0000619
24300.0000598
24350.0000556
24400.0000515
24450.0000467
24500.0000426
24550.0000386
24600.0000339
24650.0000299
24700.0000266
24750.0000233
24800.0000206
24850.0000186
24900.0000167
24950.0000148
25000.0000134

Rinsland CP, Smith MA, Russell III JM, Park JH, Farmer CB 1981. Stratospheric measurements of continuous absorption near 2400 cm-1. Appl. Optics 20, 4167-4171.




Roberts et al. 1976

found a wavenumber-dependent absorption coefficient for water vapor, both the molecule and the temporary "dimer" caused by collisions. ν is used here for wavenumber in cm-1 because I can't find the HTML for the traditional ν-tilde.

k(ν, 296K) = a + b exp(-β ν)

a = 4.2 cm2 g-1
b = 5588 cm2 g-1
β = 0.00787 cm, and

k(ν, T) = k(ν, 296K) exp [T0 (1/T - 1/296)]

where T0 = 1800 K.

Running through an example, at the wavelength of 10 μ, the wavenumber would be 1000 cm-1, and ka would be 6.33 cm2 g-1.

Roberts E, Selby JEA, Biberman IM 1976. Infrared Continuum Absorption by Atmospheric Water Vapor in the 8-12 μm Window. Appl. Opt. 15, 2085-2090.




Tarasova and Fomin 2000

gives visible and near-infrared absorption coefficients for H2O vapor from a correlated-k approach.

H2Oλ (μ)ka (m2 kg-1*)
0.55 - 0.70 0.025620
0.70 - 1.22 2.103857
1.22 - 2.27 9.919335
2.27 - 2.8078.402938
*probably, but not clear from text

Tarasova TA, Fomin BA 2000. Solar Radiation Absorption due to Water Vapor: Advanced Broadband Parameterizations. J. Appl. Meteorol. 39, 1947-1951.




Varanasi and Nemtchinov 1994

gives molecule cross-sections for the CFC-12 molecule (dichlorodifluoromethane, a chlorofluorocarbon).

CCl2F2band center (μ)σa (x 10-17 molecule-1)
 97.595 ± 0.070
115.750 ± 0.068

Varanasi P, Nemtchinov V 1994. Thermal infrared absorption coefficients of CFC-12 at atmospheric conditions. J. Quant. Spectroscopy Rad. Transfer 51, 679-687.




Verstraete 1986

gives absorption coefficients of smoke as 1500 to 12,000 m2 kg-l, and of dust as 500 to 6000 m2 kg-l, depending on the particle size spectrum. Presumably this is for the visible light range. Geometric means would be 4200 and 1700 for smoke and dust, respectively.

Verstraete MM 1986. NCAR/TN-264 + IA, NCAR TECHNICAL NOTE, A Glossary on the Environmental Impact of a Nuclear War. National Center for Atmospheric Research, Boulder CO, p. 1.




Weissler et al. 1952

gives absorption coefficients for nitrogen in the far-ultraviolet, noting that it appears to obey Beer's Law in these ranges.

N2λ (Angstroms)βa (cm-1)
"near 760" 680
796 - 6612760

Weissler GL, Lee PO, Mohr EI 1952. Absolute Absorption Coefficients of Nitrogen in the Vacuum Ultraviolet. JOSA 42, 84-90.




Werbe-fuentes et al. 2008

measured CO2 absorption coefficients at peak wavelengths in the near infrared.

λPEAK (nm)ka (m2 mol-1)
1437> 10
1955    0.25
2013    0.43
2060    0.43

Werbe-fuentes J, Moody M, Korol O, Kading T 2008. Carbon dioxide absorption in the near infrared. http://jvarekamp.web.wesleyan.edu/public_htmlA/public_htmlA/CO2/FP-1.pdf, accessed 12/03/2014.




Yamamoto 1953

These figures are for water vapor for 1 atm pressure and 300 K.

H2Oλ (μ)ka (precipitable cm-1)
12 - 130.44
13 - 140.52
14 - 150.63
15 - 160.76
16 - 170.94
17 - 181.29

Yamamoto G 1953. Radiative equilibrium of Earth's atmosphere (I). The grey case. Sci. Rept. Tohuku Univ., Ser. 5, Geophys. 5, No. 2.




Page created:12/03/2014
Last modified:  12/15/2014
Author:BPL